Copy all questions to your notebook in Pen. Do the work in Pencil. Show all the work. On each step round values to one unit and one decimal. abb* $10^{\wedge} n$. form.

1) $\left(8.18 \times 10^{-6}\right)\left(1.15 \times 10^{-5}\right)$ $\left(8.2 \times 10^{-6}\right)\left(1.2 \times 10^{-5}\right)=(8.2)(1.2) \times 10^{-6+-5}$
2) $\left(5.8 \times 10^{-6}\right)\left(2 \times 10^{4}\right)$
3) $\left(0.8 \times 10^{4}\right)\left(1.28 \times 10^{6}\right)=9.84 \times 10^{-11}=\begin{aligned} & =9.8 \times 10^{-11}\end{aligned}$
4) $\left(3.8 \times 10^{-6}\right)\left(2.37 \times 10^{-3}\right)$
5) $\left(1.9 \times 10^{-3}\right)\left(2 \times 10^{4}\right)$
6) $\left(9.2 \times 10^{5}\right)\left(4 \times 10^{-3}\right)$
7) $\frac{7.8 \times 10^{4}}{8 \times 10^{1}}$
8) $\frac{5.3 \times 10^{3}}{7.65 \times 10^{5}}$
9) $\frac{4.6 \times 10^{2}}{5.01 \times 10^{-3}}$
10) $\frac{7.6 \times 10^{0}}{5.4 \times 10^{-6}}$
11) $\frac{5.5 \times 10^{-1}}{5.3 \times 10^{2}}$
12) $\frac{2.04 \times 10^{-1}}{2 \times 10^{-2}}$
13) $\frac{4 \times 10^{-6}}{5 \times 10^{-1}}$
14) $\frac{8.6 \times 10^{0}}{7.87 \times 10^{6}}=\left(\frac{8.6}{7.9}\right) \times 10^{0-6}=1.09 \times 10^{-6}$ $=1.1 \times 10^{-6}$
15) $\frac{5.03 \times 10^{3}}{6 \times 10^{-4}}$
16) $\frac{2.4 \times 10^{5}}{6.4 \times 10^{4}}$

Practice \#4

Which of the following shows the numbers in order from least to greatest?
A. $\quad 5.7 \times 10^{3}, 3.9 \times 10^{-2}, 1.8 \times 10^{3}, 8.2 \times 10^{-2}$
B. $8.2 \times 10^{-2}, 3.9 \times 10^{-2}, 1.8 \times 10^{3}, 5.7 \times 10^{3}$
C. $1.8 \times 10^{3}, 3.9 \times 10^{-2}, 5.7 \times 10^{3}, 8.2 \times 10^{-2}$
D. $3.9 \times 10^{-2}, 8.2 \times 10^{-2}, 1.8 \times 10^{3}, 5.7 \times 10^{3}$

According to the table, which experiment had the greatest number of bacteria?

Experiment Results

Experiment	Number of Bacteria
W	8.1×10^{5}
X	6.1×10^{5}
Y	4.8×10^{6}
Z	3.2×10^{6}

Hint: make a number line

Copy All Q in Pen show all tour work in pencil. Look for Conversion factors

(online)

Use the factor-label method to make the following conversions. Remember to use the appropriate number of sf's in your answer.

Part 2

1. 74 cm x

$$
\frac{1 \mathrm{~m}}{100 \mathrm{ch}}=0.74 \text { meters }
$$

2. $8.32 \times 10^{-2} \mathrm{~kg} \mathrm{x}$

$$
=83.2 \mathrm{grams}
$$

3. 55.5 mL x

$$
-=55.5 \mathrm{~cm}^{3}
$$

4. 0.00527 cal x

$$
=5.27 \times 10^{-6} \mathrm{kcat}
$$

$$
\frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}=9.52 \times 10^{2} \text { micrometers }(\mu \mathrm{m})
$$

5. $9.52 \times 10^{-4} \mathrm{~m} \mathrm{x}$

$$
? \quad=M m
$$

6. 41.0 mL x

$$
\begin{array}{ll}
2 & =0.0410 \mathrm{~L} \\
\hline
\end{array}
$$

7. $6.0 \times 10^{-1} \mathrm{~g} \mathrm{x} \quad$, $\quad=6.0 \times 10^{2} \mathrm{mg}$
8. $8.34 \times 10^{-9} \mathrm{cg} \mathrm{x} \quad \bigcup_{0}=8.34 \times 10^{-11} \mathrm{~g}$
9. $5.0 \times 10^{3} \mathrm{~mm} \mathrm{x}$

$$
\begin{array}{ll}
2 & =5.0 \mathrm{~m} \\
0 &
\end{array}
$$

10. 1 day x

$$
\frac{24 h}{1 d a y} x \frac{60 \mathrm{~min}}{1 h} x \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=86,400 \mathrm{sec} \text { onds }
$$

11. $5 \times 10^{4} \mathrm{mmx} ?$? $=5 \times 10^{-2} \mathrm{~km}$
12. $9.1 \times 10^{-13} \mathrm{~kg} \mathrm{x} ?_{\mathrm{o}} \quad$| 々 |
| :--- |
13. 1 year x ? ?

$$
=8760 \mathrm{hr}
$$

14. 4.22 cL x

$$
\frac{1 L}{10^{2} c L} \times \frac{10^{3} m L}{1 L}=4.22 \times 10^{1} \mathrm{~mL}
$$

example
15. 1 mile x

$$
=63,360 \mathrm{in}
$$

Part 2

1. How many nickels could you trade for 250 yen? $\$ 1=150$ yen.

$$
250 \text { yen } x \frac{\$ 1}{150 \text { yen }} \times \frac{20 \text { nickels }}{\$ 1}=33.3 \text { nickels } \rightarrow 33 \text { nickels }(2 \text { sig.figs. })
$$

2. Your school club sold 600 tickets to a chili supper. The chili recipe for 10 persons requires 2 teaspoons of chili powder? How many teaspoons of chili powder will you need altogether?
600 tickets $\quad=120$ tsp chili powder
3. How many cups of chili powder will you need? Three teaspoons (tsp) equal one tablespoon (TBS) and 16 tablespoons equal 1 cup.
120 tsp $\quad ;=2.5$ cupschili powder
4. How many seconds in a year? (assume 30 days in an average month)

1 yr $x \frac{12 \mathrm{mo}}{1 \mathrm{yr}} \mathrm{x}$:

120 tsp $\frac{1 T B S}{3 t s p} \times \frac{1 \text { cup }}{16 T B S}=2.5$ cups chili powder
5. Chloroform is a liquid once used for anesthetic. What is the volume of 5.0 g of chloroform. The density of chloroform $1.49 \mathrm{~g} / \mathrm{mL}$

$$
=3.36 \mathrm{~mL}
$$

6. How many inches long is a football field?

7. How many m^{3} is $4.6 \mathrm{~cm}^{3}$.? Express your answer in scientific notation.

$$
=4.6 \times 10^{-2} \mathrm{~m}^{3}
$$

8. How many mg is 59.0 kg ? Express your answer in scientific notation.

$$
=5.9 \times 10^{7} \mathrm{mg}
$$

